Basic Biostatistics Statistics for Public Health Practice

B. Burt Gerstman

Chapter 8: Introduction to Statistical Inference

Basic Biostat

8: Intro to Statistical Inference

In Chapter 8:

8.1 Concepts8.2 Sampling Behavior of a Mean8.3 Sampling Behavior of a Count and Proportion

§8.1: Concepts

Statistical inference is the act of generalizing from a **sample** to a **population** with calculated degree of certainty.

We want to learn about population *parameters*

. . .

Basic Biostat

...but we can only calculate sample statistics

Parameters and Statistics

It is essential that we draw distinctions between parameters and statistics

	Parameters	Statistics
Source	Population	Sample
Calculated?	No	Yes
Constants?	Yes	No
Examples	μ, , ρ	\overline{x}, s, \hat{p}

8: Intro to Statistical Inference

Parameters and Statistics

We are going to illustrate inferential concept by considering how well a given sample mean "x-bar" reflects an underling population mean µ

Basic Biostat

© 2008 Jones and Bartlett Publishers

Precision and reliability

- How precisely does a given sample mean (x-bar) reflect underlying population mean (µ)? How reliable are our inferences?
- To answer these questions, we consider a simulation experiment in which we take all possible samples of size *n* taken from the population

Simulation Experiment

- Population (Figure A, next slide)
 N = 10,000
 Lognormal shape (positive skew)
 µ = 173
- = 30
 Take repeated SRSs, each of n = 10
 - Calculate x-bar in each sample
 - Plot x-bars (Figure B, next slide)

Simulation Experiment Results

- Distribution B is more Normal than distribution
 A Õ Central Limit Theorem
- Both distributions centered on μ Õ x-bar is unbiased estimator of μ
- 3. Distribution B is skinnier than distribution A Õ related to "square root law"

Basic Biostat

8: Intro to Statistical Infe

Reiteration of Key Findings

- Finding 1 (central limit theorem): the sampling distribution of x-bar tends toward Normality even when the population is not Normal (esp. strong in large samples).
- Finding 2 (unbiasedness): the expected value of x-bar is µ
- Finding 3 is related to the square root law, which says:

$$T_{\overline{x}} = \frac{1}{\sqrt{n}}$$

Basic Biostat

8: Intro to Statistical Inference

Standard Deviation of the Mean

- The standard deviation of the sampling distribution of the mean has a special name: standard error of the mean (denoted xbar or SExbar)
- The square root law says:

$$\dagger_{\overline{x}} \equiv SE_{\overline{x}} = \frac{\dagger}{\sqrt{n}}$$

8: Intro to Statistical Inference

Square Root Law Example: = 15

For
$$n = 1 \implies SE_{\overline{x}} = \frac{\dagger}{\sqrt{n}} = \frac{15}{\sqrt{1}} = 15$$

For
$$n = 4 \Rightarrow SE_{\overline{x}} = \frac{\dagger}{\sqrt{n}} = \frac{15}{\sqrt{4}} = 7.5$$

For $n = 16 \Rightarrow SE_{\overline{x}} = \frac{\dagger}{\sqrt{n}} = \frac{15}{\sqrt{16}} = 3.75$

Quadrupling the sample size cuts the standard error of the mean in half

Basic Biostat

8: Intro to Statistical Inference

Putting it together: $\overline{x} \sim N(\mu, SE)$

- The sampling distribution of x-bar tends to be Normal with mean μ and $_{xbar} = / n$
- Example: Let X represent Weschler Adult Intelligence Scores; X ~ N(100, 15).
 - Take an SRS of n = 10
 - xbar = / n = 15/ 10 = 4.7
 - Thus, xbar ~ N(100, 4.7)

68-95-99.7 rule applied to the SDM

- We've established xbar ~ N(100, 4.7). Therefore,
- 68% of x-bars within

 µ ± xbar
 = 100 ± 4.7
 = 95.3 to 104.7
- 95% of x-bars within

 µ ± 2 · xbar

 = 100 ± (2.4.7)

 = 90.6 to 109.4

Basic Biostat

8: Intro to Statistical Inference

Law of Large Numbers

As a sample gets larger and larger, the x-bar approaches μ . Figure demonstrates results from an experiment done in a population with $\mu = 173.3$

8.3 Sampling Behavior of Counts and Proportions

- Recall Chapter: binomial random variable represents the random number of successes in *n* independent Bernoulli trials each with probability of success *p*; otation X~b(*n*,*p*)
- X~b(10,0.2) is shown on the next slide. Note that $\mu = 2$
- Reexpress the counts of success as proportion p-hat = x / n. For this re-expression, $\mu = 0.2$

Normal Approximation to the Binomial ("npq rule")

- When n is large, the binomial distribution approximates a Normal distribution ("the Normal Approximation")
- How large does the sample have to be to apply the Normal approximation? \Rightarrow One rule says that the Normal approximation applies when npq = 5

Top figure: $X \sim b(10,0.2)$ $npq = 10 \cdot 0.2 \cdot (1-0.2)$ $= 1.6 \Rightarrow Normal$ approximation does **not** apply

Normal Approximation for a Binomial Count

$$\sim = np \text{ and } \dagger = \sqrt{npq}$$

When Normal approximation applies:

$$X \sim N(np, \sqrt{npq})$$

Basic Biostat

8: Intro to Statistical Inference

Normal Approximation for a Binomial Proportion

$$\sim = p \text{ and } \dagger = \sqrt{\frac{pq}{n}}$$
$$\hat{p} \sim N\left(p, \sqrt{\frac{pq}{n}}\right)$$

Basic Biostat

8: Intro to Statistical Inference

© 2008 Jones and Bartlett Publishers

"p-hat" represents the sample proportion

23

© 2008 Jones and Bartlett Publishers

Basi

Illustrative Example: Normal Approximation to the Binomial

- Suppose the prevalence of a risk factor in a population is 20%
- Take an SRS of n = 100 from population
- A variable number of cases in a sample will follow a binomial distribution with n = 20 and p = .2

Basic Biostat

8: Intro to Statistical Inference

Illustrative Example, cont. The Normal approximation for the count is: $\sim = np = 100 \cdot .2 = 20$ and $\dagger = \sqrt{npq} = \sqrt{100 \cdot .2 \cdot .8} = 4$ $X \sim N(20,4)$

The Normal approximation for the **proportion** is:

$$\sim = p = .2$$

$$\dagger = \sqrt{\frac{pq}{n}} = \sqrt{\frac{.2 \cdot .8}{100}} = 0.04$$
$$\hat{p}_{\text{Infro to Statistical University}}$$

Basic Biostat

© 2008 Jones and Bartlett Publishers

Illustrative Example, cont.

1. Statement of problem: Recall $X \sim N(20, 4)$ Suppose we observe 30 cases in a sample. What is the probability of observing at least 30 cases under these circumstance, i.e., Pr(X = 30) = ?

2. Standardize: z = (30 - 20) / 4 = 2.5

3. Sketch: next slide

4. Table B: Pr(Z 2.5) = 0.0062

Basic Biostat

8: Intro to Statistical Inference

© 2008 Jones and Bartlett Publishers

Illustrative Example, cont. Binomial and superimposed Normal distributions

